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ON 2-ABSORBING PRIMARY IDEALS IN

COMMUTATIVE RINGS

Ayman Badawi, Unsal Tekir, and Ece Yetkin

Abstract. Let R be a commutative ring with 1 �= 0. In this paper, we
introduce the concept of 2-absorbing primary ideal which is a general-
ization of primary ideal. A proper ideal I of R is called a 2-absorbing

primary ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or

ac ∈
√
I or bc ∈

√
I. A number of results concerning 2-absorbing primary

ideals and examples of 2-absorbing primary ideals are given.

1. Introduction

We assume throughout this paper that all rings are commutative with 1 �= 0.
Let R be a commutative ring. An ideal I of R is said to be proper if I �= R.
Let I be a proper ideal of R. Then ZI(R) = {r ∈ R | rs ∈ I for some
s ∈ R\ I}. The concept of 2-absorbing ideal, which is a generalization of prime
ideal, was introduced by Badawi in [3] and studied in [2], [8], and [4]. Various
generalizations of prime ideals are also studied in [1] and [5]. Recall that a
proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R
and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. In this paper, we introduce
the concept of 2-absorbing primary ideal which is a generalization of primary
ideal. A proper ideal I of R is said to be a 2-absorbing primary ideal of R if
whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I or ac ∈ √

I or bc ∈ √
I.

Note that a 2-absorbing ideal of a commutative ring R is a 2-absorbing
primary ideal ofR. However, these are different concepts. For instance, consider
the ideal I = (12) of Z. Since 2 · 2 · 3 ∈ I, but 2 · 2 /∈ I and 2 · 3 /∈ I, I is not
a 2-absorbing ideal of Z. However, it is clear that I is a 2-absorbing primary
ideal of Z. It is also clear that every primary ideal of a ring R is a 2-absorbing
primary ideal of R. However, the converse is not true. For example, (6) is a
2-absorbing primary ideal of Z, but it is not a primary ideal of Z.

Among many results in this paper, it is shown (Theorem 2.2) that the radical
of a 2-absorbing primary ideal of a ring R is a 2-absorbing ideal of R. It is
shown (Theorem 2.4) that if I1 is a P1-primary ideal of R for some prime ideal
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P1 of R and I2 is a P2-primary ideal of R for some prime ideal P2 of R, then
I1I2 and I1 ∩ I2 are 2-absorbing primary ideals of R. It is shown (Theorem

2.8) that if I is a proper ideal of a ring R such that
√
I is a prime ideal of

R, then I is a 2-absorbing primary ideal of R. It is shown (Theorem 2.10)
that every proper ideal of a divided ring is a 2-absorbing primary ideal. It is
shown (Theorem 2.11) that a Noetherian domain R is a Dedekind domain if
and only if a nonzero 2-absorbing primary ideal of R is either Mk for some
maximal ideal M of R and some positive integer k ≥ 1 or Mk

1M
n
2 for some

distinct maximal ideals M1,M2 of R and some positive integers k, n ≥ 1. It
is shown (Theorem 2.19) that a proper ideal I of R is a 2-absorbing primary
ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1, I2, I3 of R, then
I1I2 ⊆ I or I1I3 ⊆

√
I or I2I3 ⊆

√
I. Let R = R1 × R2, where R1, R2 are

commutative rings with 1 �= 0. It is shown (Theorem 2.23) that a proper ideal
J of R is a 2-absorbing primary ideal of R if and only if either J = I1 ×R2 for
some 2-absorbing primary ideal I1 of R1 or J = R1 × I2 for some 2-absorbing
primary ideal I2 of R2 or J = I1× I2 for some primary ideal I1 of R1 and some
primary ideal I2 of R2.

2. Properties of 2-absorbing primary ideals

Definition 2.1. A proper ideal I of R is called a 2-absorbing primary ideal of
R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ √

I or bc ∈ √
I.

Theorem 2.2. If I is a 2-absorbing primary ideal of R, then
√
I is a 2-

absorbing ideal of R.

Proof. Let a, b, c ∈ R such that abc ∈ √
I, ac �∈ √

I and bc �∈ √
I. Since

abc ∈
√
I, there exists a positive integer n such that (abc)n = anbncn ∈ I.

Since I is 2-absorbing primary and ac �∈
√
I and bc �∈

√
I, we conclude that

anbn = (ab)n ∈ I, and hence ab ∈ √
I. Thus

√
I is a 2-absorbing ideal of R. �

Theorem 2.3. Suppose that I is a 2-absorbing primary ideal of R. Then one

of the following statements must hold.

(1)
√
I = P is a prime ideal,

(2)
√
I = P1 ∩P2, where P1 and P2 are the only distinct prime ideals of R

that are minimal over I.

Proof. Suppose that I is a 2-absorbing primary ideal of R. Then
√
I is a 2-

absorbing ideal by Theorem 2.2. Since
√√

I =
√
I, the claim follows from [3,

Theorem 2.4]. �

Theorem 2.4. Let R be a commutative ring with 1 �= 0. Suppose that I1 is a

P1-primary ideal of R for some prime ideal P1 of R, and I2 is a P2-primary

ideal of R for some prime ideal P2 of R. Then the following statements hold.

(1) I1I2 is a 2-absorbing primary ideal of R.

(2) I1 ∩ I2 is a 2-absorbing primary ideal of R.
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Proof. (1) Suppose that abc ∈ I1I2 for some a, b, c ∈ R, ac �∈ √
I1I2, and

bc �∈ √
I1I2 = P1 ∩ P2. Then a, b, c �∈ √

I1I2 = P1 ∩ P2. Since
√
I1I2 = P1 ∩ P2,

we conclude that
√
I1I2 is a 2-absorbing ideal of R. Since

√
I1I2 is a 2-absorbing

ideal of R and ac, bc �∈ √
I1I2, we have ab ∈ √

I1I2. We show that ab ∈ I1I2.
Since ab ∈ √

I1I2 ⊆ P1, we may assume that a ∈ P1. Since a �∈ √
I1I2 and

ab ∈ √
I1I2 ⊆ P2, we conclude that a �∈ P2 and b ∈ P2. Since b ∈ P2 and

b �∈ √
I1I2, we have b �∈ P1. If a ∈ I1 and b ∈ I2, then ab ∈ I1I2 and we

are done. Thus assume that a �∈ I1. Since I1 is a P1-primary ideal of R and
a �∈ I1, we have bc ∈ P1. Since b ∈ P2 and bc ∈ P1, we have bc ∈ √

I1I2, which
is a contradiction. Thus a ∈ I1. Similarly, assume that b �∈ I2. Since I2 is a
P2-primary ideal of R and b �∈ I2, we have ac ∈ P2. Since ac ∈ P2 and a ∈ P1,
we have ac ∈ √

I1I2, which is a contradiction. Thus b ∈ I2. Hence ab ∈ I1I2.
(2)(Similar to the proof in (1)). Let H = I1 ∩ I2. Then

√
H = P1 ∩ P2.

Suppose that abc ∈ H for some a, b, c ∈ R, ac �∈ √
H , and bc �∈ √

H . Then
a, b, c �∈

√
H = P1 ∩ P2. Since

√
H = P1 ∩ P2 is a 2-absorbing ideal of R and

ac, bc �∈ √
H , ab ∈ √

H . We show that ab ∈ H . Since ab ∈ √
H ⊆ P1, we may

assume that a ∈ P1. Since a �∈ √
H and ab ∈ √

H ⊆ P2, we conclude that
a �∈ P2 and b ∈ P2. Since b ∈ P2 and b �∈

√
H, b �∈ P1. If a ∈ I1 and b ∈ I2, then

ab ∈ H and we are done. Thus assume that a �∈ I1. Since I1 is a P1-primary
ideal of R and a �∈ I1, we have bc ∈ P1. Since b ∈ P2 and bc ∈ P1, we have
bc ∈ √

H , which is a contradiction. Thus a ∈ I1. Similarly, assume that b �∈ I2.
Since I2 is a P2-primary ideal of R and b �∈ I2, we have ac ∈ P2. Since ac ∈ P2

and a ∈ P1, we have ac ∈ √
H , which is a contradiction. Thus b ∈ I2. Hence

ab ∈ H . �

In view of Theorem 2.4, we have the following result.

Corollary 2.5. Let R be a commutative ring with 1 �= 0, and let P1, P2 be

prime ideals of R. If Pn
1 is a P1-primary ideal of R for some positive integer

n ≥ 1 and Pm
2 is a P2-primary ideal of R for some positive integer m ≥ 1, then

Pn
1 P

m
2 and Pn

1 ∩ Pm
2 are 2-absorbing primary ideals of R. In particular, P1P2

is a 2-absorbing primary ideal of R.

In the following example, we show that if P1, P2 are prime ideals of a ring R
and n,m are positive integers, then Pn

1 P
m
2 need not be a 2-absorbing primary

ideal of R.

Example 2.6. Let R = Z[Y ] + 3XZ[Y,X ]. Then P1 = Y R and P2 =
3XZ[Y,X ] are prime ideals of R. Let I = P1P

2
2 . Then 3X2 · Y · 3 = 9X2Y ∈ I

and 3X2 · Y = 3X2Y �∈ I. Clearly 3X2 · 3 = 9X2 �∈
√
I = P1 ∩ P2 and

Y · 3 = 3Y �∈ √
I = P1 ∩ P2 . Hence I is not a 2-absorbing primary ideal of R.

In the following example, we show that if I ⊂ J such that I is a 2-absorbing
primary ideal of R and

√
I =

√
J , then J need not be a 2-absorbing ideal of R.

Example 2.7. Let R = Z[X,Y, Z]. Then P1 = XR, P2 = Y R are prime ideals
of R, and I = P 3

1P
3
2 is a 2-absorbing primary ideal of R by Corollary 2.5. Let
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J = (XY Z, Y 3, X3)R. Then I ⊂ J and
√
I =

√
J = P1 ∩ P2 = (XY )R. We

show that J is not a 2-absorbing ideal of R. For X · Y · Z = XY Z ∈ J , but
X · Y = XY �∈ J , X · Z = XZ �∈

√
J , and Y · Z = Y Z �∈

√
J . Thus J is not a

2-absorbing ideal of R.

Let I be a proper ideal of a ring R. It is known that if
√
I is a maximal

ideal of R, then I is a primary ideal of R. In the following result, we show that
if
√
I is a prime ideal of R, then I is a 2-absorbing primary ideal of R.

Theorem 2.8. Let I be an ideal of R. If
√
I is a prime ideal of R, then I is a

2-absorbing primary ideal of R. In particular, if P is a prime ideal of R, then

Pn is a 2-absorbing primary ideal of R for every positive integer n ≥ 1.

Proof. Suppose that abc ∈ I and ab �∈ I. Since (ac)(bc) = abc2 ∈ I ⊆ √
I and√

I is a prime ideal of R, we have bc ∈ √
I or ac ∈ √

I. Hence I is a 2-absorbing
primary ideal of R. �

In view of Theorem 2.2, Theorem 2.3, and Theorem 2.8, the following is an
example of an ideal J of a ring R where

√
J is a 2-absorbing ideal of R, but J

is not a 2-absorbing primary ideal of R.

Example 2.9. Let R = Z[X,Y, Z] and let J = (XY Z, Y 3, X3)R. Then
√
J =

Y R∩XR is a 2-absorbing ideal of R, but J is not a 2-absorbing primary ideal
of R by Example 2.7. Also, see Example 2.6.

Recall that a commutative ring R with 1 �= 0 is called a divided ring if for
every prime ideal P of R, we have P ⊆ xR for every x ∈ R \P . Every chained
ring is a divided ring (recall that a commutative ring R with 1 �= 0 is called a
chained ring, if x | y(inR) or y | x(inR) for every x, y ∈ R). It is known that
the prime ideals of a divided ring are linearly ordered; i.e., if P1, P2 are prime
ideals of R, then P1 ⊆ P2 or P2 ⊆ P1. We have the following result.

Theorem 2.10. Let R be a commutative divided ring with 1 �= 0. Then every

proper ideal of R is a 2-absorbing primary ideal of R. In particular, every

proper ideal of a chained ring is a 2-absorbing primary ideal.

Proof. Let I be a proper ideal of R. Since the prime ideals of a divided ring
are linearly ordered, we conclude that

√
I is a prime ideal of R. Hence I is a

2-absorbing primary ideal of R by Theorem 2.8. �

Let R be an integral domain with 1 �= 0, and let K be the quotient field
of R. If I is a nonzero proper ideal of R, then I−1 = {x ∈ K | xI ∈ R}.
An integral domain R is said to be a Dedekind domain if II−1 = R for every
nonzero proper ideal I of R.

Theorem 2.11. Let R be a Noetherian integral domain with 1 �= 0 that is not

a field. Then the following statements are equivalent.

(1) R is a Dedekind domain.
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(2) A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if

and only if either I = Mn for some maximal ideal M of R and some

positive integer n ≥ 1 or I = Mn
1 M

m
2 for some maximal ideals M1,M2

of R and some positive integers n,m ≥ 1.
(3) If I is a nonzero proper 2-absorbing primary ideal of R, then either

I = Mn for some maximal ideal M of R and some positive integer

n ≥ 1 or I = Mn
1 M

m
2 for some maximal ideals M1,M2 of R and some

positive integers n,m ≥ 1.
(4) A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and

only if either I = Pn for some prime ideal P of R and some positive

integer n ≥ 1 or I = Pn
1 P

m
2 for some prime ideals P1, P2 of R and

some positive integers n,m ≥ 1.
(5) If I is a nonzero proper 2-absorbing primary ideal of R, then either

I = Pn for some prime ideal P of R and some positive integer n ≥ 1
or I = Pn

1 P
m
2 for some prime ideals P1, P2 of R and some positive

integers n,m ≥ 1.

Proof. (1) ⇒ (2). Suppose that R is a Dedekind domain that is not a field.
Then every nonzero prime ideal of R is maximal. Let I be a nonzero proper
ideal of R. Then I = Mn1

1 Mn2

2 · · ·Mnk

k
for some distinct maximal ideals

M1, . . . ,Mk of R and some positive integers n1, . . . , nk ≥ 1. Suppose that
I is a 2-absorbing primary ideal of R. Since every nonzero prime ideal of R is
maximal and

√
I is either a maximal ideal of R or I1 ∩ I2 for some maximal

ideals I1, I2 of R by Theorem 2.3, we conclude that either I = Mn for some
maximal ideal M of R and some positive integer n ≥ 1 or I = Mn

1 M
m
2 for some

maximal ideals M1,M2 of R and some positive integers n,m ≥ 1. Conversely,
suppose that I = Mn for some maximal ideal M of R and some positive integer
n ≥ 1 or I = Mn

1 M
m
2 for some maximal ideals M1,M2 of R and some positive

integers n,m ≥ 1. Then I is a 2-absorbing primary ideal of R by Theorem 2.8
and Corollary 2.5.

(2) ⇒ (3). It is clear.
(2) ⇒ (4). It is clear.
(4) ⇒ (5). It is clear.
(3) ⇒ (5). It is clear.
(5) ⇒ (1). Let M be a maximal ideal of R. Since every ideal between M2

and M is an M -primary ideal, and hence a 2-absorbing primary ideal of R, the
hypothesis in (5) implies that there are no ideals properly between M2 and M .
Hence R is a Dedekind domain by [6, Theorem 39.2, p. 470]. �

Since every principal ideal domain is a Dedekind domain, we have the fol-
lowing result as a consequence of Theorem 2.11.

Corollary 2.12. Let R be a principal ideal domain and I be a nonzero proper

ideal of R. Then I is a 2-absorbing primary ideal of R if and only if either

I = pkR for some prime element p of R and k ≥ 1 or I = pn1p
m
2 R for some
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distinct prime elements p1, p2 of R and some positive integers n,m ≥ 1. In

particular, if R = Z or R = F [X ] for some field F , then a proper ideal I of

R is a 2-absorbing primary ideal of R if and only if either I = pkR for some

prime element p of R and some positive integer k ≥ 1 or I = pn1p
m
2 R for some

distinct prime elements p1, p2 of R and some positive integers n,m ≥ 1.

The following is an example of a unique factorization domain that contains
a 2-absorbing primary ideal not of the form Pn

1 P
m
2 for some prime ideals P1, P2

of R and some positive integers n,m ≥ 1.

Example 2.13. Let R = K [X,Y ], where K is a field. Consider the ideal
I = (X,Y 2) of R. Then I is a 2-absorbing primary ideal of R that is not of
the form Pn

1 P
m
2 , where P1, P2 are prime ideals of R and n,m ≥ 1.

Let R be a commutative Noetherian ring with 1 �= 0. It is well-known that
every proper ideal of R has a primary decomposition. Since every primary ideal
is a 2-absorbing primary ideal, we conclude that every proper ideal of R has
a 2-absorbing primary decomposition. However, decomposition of an ideal of
R into 2-absorbing primary ideals need not be unique. We have the following
example.

Example 2.14. In light of Corollary 2.12, consider the ideal (60) of Z. Then

(60) = (3) ∩ (4) ∩ (5) = (3) ∩ (20) = (4) ∩ (15) = (5) ∩ (12).

Hence (60) has four distinct 2-absorbing primary decompositions. The ideal
(210) of Z has exactly ten distinct 2-absorbing primary decompositions.

(210) = (2) ∩ (3) ∩ (5) ∩ (7) = (6) ∩ (5) ∩ (7) = (10) ∩ (3) ∩ (7)

= (14) ∩ (3) ∩ (5) = (15) ∩ (2) ∩ (7) = (15) ∩ (14) = (21) ∩ (2) ∩ (5)

= (21) ∩ (10) = (35) ∩ (2) ∩ (3) = (35) ∩ (6).

Definition 2.15. Let I be a 2-absorbing primary ideal of R. Then P =
√
I is

a 2-absorbing ideal by Theorem 2.2. We say that I is a P -2-absorbing primary
ideal of R.

Theorem 2.16. Let I1, I2, . . . , In be P -2-absorbing primary ideals of R for

some 2-absorbing ideal P of R. Then I =
⋂n

i=1 Ii is a P -2-absorbing primary

ideal of R.

Proof. First observe that
√
I =

⋂n

i=1

√
Ii = P . Suppose that abc ∈ I for some

a, b, c ∈ R and ab �∈ I. Then ab �∈ Ii for some 1 ≤ i ≤ n. Hence bc ∈ √
Ii = P

or ac ∈ √
Ii = P . �

If I1, I2 are 2-absorbing primary ideals of a ring R, then I1 ∩ I2 need not be
a 2-absorbing primary ideal of R. We have the following example.

Example 2.17. Let I1 = 50Z and I2 = 75Z. Then I1, I2 are 2-absorbing
primary ideals of Z by Corollary 2.12. Since

√
I1 ∩ I2 = 2Z ∩ 3Z ∩ 5Z = 30Z,

I1 ∩ I2 is not a 2-absorbing primary ideal of Z by Theorem 2.3.
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In the following result, we show that a proper ideal I of a ring R is a 2-
absorbing primary ideal of R if and only if whenever I1I2I3 ⊆ I for some ideals
I1, I2, I3 of R, then I1I2 ⊆ I or I2I3 ⊆

√
I or I1I3 ⊆

√
I. But first we have the

following lemma.

Lemma 2.18. Let I be a 2-absorbing primary ideal of a ring R and suppose

that abJ ⊆ I for some elements a, b ∈ R and some ideal J of R. If ab �∈ I,
then aJ ⊆ √

I or bJ ⊆ √
I.

Proof. Suppose that aJ �⊆
√
I and bJ �⊆

√
I. Then aj1 �∈

√
I and bj2 �∈

√
I for

some j1, j2 ∈ J . Since abj1 ∈ I and ab �∈ I and aj1 �∈ √
I, we have bj1 ∈ √

I .
Since abj2 ∈ I and ab �∈ I and bj2 �∈ √

I, we have aj2 ∈ √
I. Now, since

ab(j1 + j2) ∈ I and ab �∈ I, we have a(j1 + j2) ∈
√
I or b(j1 + j2) ∈

√
I .

Suppose that a(j1 + j2) = aj1 + aj2 ∈
√
I. Since aj2 ∈

√
I, we have aj1 ∈

√
I ,

a contradiction. Suppose that b(j1 + j2) = bj1 + bj2 ∈
√
I. Since bj1 ∈

√
I, we

have bj2 ∈
√
I, a contradiction again. Thus aJ ⊆

√
I or bJ ⊆

√
I. �

Theorem 2.19. Let I be a proper ideal of R. Then I is a 2-absorbing primary

ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1, I2, I3 of R, then
I1I2 ⊆ I or I2I3 ⊆ √

I or I1I3 ⊆ √
I.

Proof. Suppose that whenever I1I2I3 ⊆ I for some ideals I1, I2, I3 of R, then
I1I2 ⊆ I or I2I3 ⊆ √

I or I1I3 ⊆ √
I. Then clearly I is a 2-absorbing primary

ideal of R by definition.
Conversely, suppose that I is a 2-absorbing primary ideal ofR and I1I2I3 ⊆ I

for some ideals I1, I2, I3 of R, such that I1I2 �⊆ I. We show that I1I3 ⊆
√
I

or I2I3 ⊆ √
I. Suppose that neither I1I3 ⊆ √

I nor I2I3 ⊆ √
I. Then there

are q1 ∈ I1 and q2 ∈ I2 such that neither q1I3 ⊆ √
I nor q2I3 ⊆ √

I. Since
q1q2I3 ⊆ I and neither q1I3 ⊆

√
I nor q2I3 ⊆

√
I, we have q1q2 ∈ I by Lemma

2.18.
Since I1I2 �⊆ I, we have ab �∈ I for some a ∈ I1, b ∈ I2. Since abI3 ⊆ I and

ab �∈ I, we have aI3 ⊆ √
I or bI3 ⊆ √

I by Lemma 2.18. We consider three
cases. Case one: Suppose that aI3 ⊆

√
I, but bI3 �⊆

√
I. Since q1bI3 ⊆ I

and neither bI3 ⊆ √
I nor q1I3 ⊆ √

I, we conclude that q1b ∈ I by Lemma
2.18. Since (a + q1)bI3 ⊆ I and aI3 ⊆ √

I, but q1I3 �⊆ √
I, we conclude that

(a + q1)I3 �⊆ √
I. Since neither bI3 ⊆ √

I nor (a + q1)I3 ⊆ √
I, we conclude

that (a+ q1)b ∈ I by Lemma 2.18. Since (a+ q1)b = ab+ q1b ∈ I and q1b ∈ I,

we conclude that ab ∈ I, a contradiction. Case two: Suppose that bI3 ⊆ √
I ,

but aI3 �⊆ √
I. Since aq2I3 ⊆ I and neither aI3 ⊆ √

I nor q2I3 ⊆ √
I, we

conclude that aq2 ∈ I. Since a(b+ q2)I3 ⊆ I and bI3 ⊆
√
I, but q2I3 �⊆

√
I, we

conclude that (b + q2)I3 �⊆
√
I. Since neither aI3 ⊆

√
I nor (b + q2)I3 ⊆

√
I ,

we conclude that a(b+ q2) ∈ I by Lemma 2.18. Since a(b+ q2) = ab+ aq2 ∈ I
and aq2 ∈ I, we conclude that ab ∈ I, a contradiction. Case three: Suppose
that aI3 ⊆ √

I and bI3 ⊆ √
I. Since bI3 ⊆ √

I and q2I3 �⊆ √
I, we conclude

that (b + q2)I3 �⊆
√
I. Since q1(b + q2)I3 ⊆ I and neither q1I3 ⊆

√
I nor
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(b+ q2)I3 ⊆
√
I, we conclude that q1(b+ q2) = q1b+ q1q2 ∈ I by Lemma 2.18.

Since q1q2 ∈ I and q1b+q1q2 ∈ I, we conclude that bq1 ∈ I. Since aI3 ⊆
√
I and

q1I3 �⊆ √
I, we conclude that (a+q1)I3 �⊆ √

I. Since (a+q1)q2I3 ⊆ I and neither

q2I3 ⊆ √
I nor (a+q1)I3 ⊆ √

I, we conclude that (a+q1)q2 = aq2+q1q2 ∈ I by
Lemma 2.18. Since q1q2 ∈ I and aq2+q1q2 ∈ I, we conclude that aq2 ∈ I. Now,
since (a+q1)(b+q2)I3 ⊆ I and neither (a+q1)I3 ⊆ √

I nor (b+q2)I3 ⊆ √
I, we

conclude that (a+ q1)(b+ q2) = ab+aq2+ bq1+ q1q2 ∈ I by Lemma 2.18. Since
aq2, bq1, q1q2 ∈ I, we have aq2 + bq1 + q1q2 ∈ I. Since ab+ aq2 + bq1 + q1q2 ∈ I
and aq2 + bq1 + q1q2 ∈ I, we conclude that ab ∈ I, a contradiction. Hence
I1I3 ⊆ √

I or I2I3 ⊆ √
I. �

Theorem 2.20. Let f : R → R′ be a homomorphism of commutative rings.

Then the following statements hold.

(1) If I ′ is a 2-absorbing primary ideal of R′, then f−1(I ′) is a 2-absorbing
primary ideal of R.

(2) If f is an epimorphism and I is a 2-absorbing primary ideal of R con-

taining Ker(f), then f(I) is a 2-absorbing primary ideal of R′.

Proof. (1) Let a, b, c ∈ R such that abc ∈ f−1(I ′). Then f(abc) = f(a)f(b)f(c)

∈ I
′

. Hence we have f(a)f(b) ∈ I
′

or f(b)f(c) ∈
√
I ′ or f(a)f(c) ∈

√
I ′ , and

thus ab ∈ f−1(I ′) or bc ∈ f−1(
√
I ′) or ac ∈ f−1(

√
I ′). By using the equality

f−1(
√
I ′) =

√
f−1(I ′), we conclude that f−1(I ′) is a 2-absorbing primary ideal

of R.
(2) Let a′, b′, c′ ∈ R′ and a′b′c′ ∈ f(I). Then there exist a, b, c ∈ R such that

f(a) = a′, f(b) = b′, f(c) = c′, and f(abc) = a′b′c′ ∈ f(I). Since Ker f ⊆ I,

we have abc ∈ I. It implies that ab ∈ I or ac ∈
√
I or bc ∈

√
I. This means

that a′b′ ∈ f(I) or a′c′ ∈ f(
√
I) ⊆

√
f(I) or b′c′ ∈ f(

√
I) ⊆

√
f(I). Thus f(I)

is a 2-absorbing primary ideal of R′. �

Corollary 2.21. Let R be a commutative ring with 1 �= 0. Suppose that I, J
are distinct proper ideals of R. If J ⊆ I and I is a 2-absorbing primary ideal

of R, then I/J is a 2-absorbing primary ideal of R/J .

Proof. The proof is clear by Theorem 2.20(2). �

Theorem 2.22. Let R be a commutative ring with 1 �= 0, S be a multiplica-

tively closed subset of R, and I be a proper ideal of R. Then the following

statements hold.

(1) If I is a 2-absorbing primary ideal of R such that I∩S = ∅, then S−1I
is a 2-absorbing primary ideal of S−1R.

(2) If S−1I is a 2-absorbing primary ideal of S−1R and S ∩ ZI(R) = ∅,
then I is a 2-absorbing primary ideal of R.

Proof. (1) Let a, b, c ∈ R, s, t, k ∈ S such that a

s

b

t

c

k
∈ S−1I. Then there exists

u ∈ S such that uabc ∈ I. Since I is a 2-absorbing primary ideal, we get
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uab ∈ I or bc ∈
√
I or uac ∈

√
I. If uab ∈ I, then a

s

b

t
= uab

ust
∈ S−1I. If

bc ∈ √
I, then b

t

c

k
∈ S−1

√
I =

√
S−1I. If uac ∈ √

I, then a

s

c

k
= uac

usk
∈
√
S−1I.

(2) Let a, b, c ∈ R such that abc ∈ I. Then abc

1
= a

1
b

1
c

1
∈ S−1I. It follows

a

1
b

1
∈ S−1I or b

1
c

1
∈
√
S−1I or a

1
c

1
∈
√
S−1I. If a

1
b

1
= ab

1
∈ S−1I, then uab ∈ I,

for some u ∈ S. Since u ∈ S and S ∩ ZI(R) = ∅, we conclude ab ∈ I. If
b

1
c

1
= bc

1
∈

√
S−1I = S−1

√
I, then there exists v ∈ S and a positive integer

n such that (vbc)n = vnbncn ∈ I. Since v ∈ S, we have vn �∈ ZI(R). Thus

bncn ∈ I, and so bc ∈ √
I. If a

1
c

1
∈
√
S−1I, then similarly we obtain ac ∈ √

I ,
and it completes the proof. �

Theorem 2.23. Let R = R1 × R2, where R1 and R2 are commutative rings

with 1 �= 0. Let J be a proper ideal of R. Then the following statements are

equivalent.

(1) J is a 2-absorbing primary ideal of R.

(2) Either J = I1 × R2 for some 2-absorbing primary ideal I1 of R1 or

J = R1×I2 for some 2-absorbing primary ideal I2 of R2 or J = I1×I2
for some primary ideal I1 of R1 and some primary ideal I2 of R2.

Proof. (1) ⇒ (2). Assume that J is a 2-absorbing primary ideal of R. Then
J = I1 × I2 for some ideal I1 of R1 and some ideal I2 of R2. Suppose that
I2 = R2. Since J is a proper ideal of R, I1 �= R1. Let R′ = R

{0}×R2

. Then

J ′ = J

{0}×R2

is a 2-absorbing primary ideal of R′ by Corollary 2.21. Since

R′ is ring-isomorphic to R1 and I1 ∼= J ′, I1 is a 2-absorbing primary ideal of
R1. Suppose that I1 = R1. Since J is a proper ideal of R, I2 �= R2. By a
similar argument as in the previous case, I2 is a 2-absorbing primary ideal of
R2. Hence assume that I1 �= R1 and I2 �= R2. Then

√
J =

√
I1×

√
I2. Suppose

that I1 is not a primary ideal of R1. Then there are a, b ∈ R1 such that ab ∈ I1
but neither a ∈ I1 nor b ∈ √

I1. Let x = (a, 1), y = (1, 0), and c = (b, 1).

Then xyc = (ab, 0) ∈ J but neither xy = (a, 0) ∈ J nor xc = (ab, 1) ∈ √
J nor

yc = (b, 0) ∈ √
J , which is a contradiction. Thus I1 is a primary ideal of R1.

Suppose that I2 is not a primary ideal of R2. Then there are d, e ∈ R2 such that
de ∈ I2 but neither d ∈ I2 nor e ∈

√
I2. Let x = (1, d), y = (0, 1), and c = (1, e).

Then xyc = (0, de) ∈ J but neither xy = (0, d) ∈ J nor xc = (1, de) ∈ √
J nor

yc = (0, e) ∈ √
J , which is a contradiction. Thus I2 is a primary ideal of R2.

(2) ⇒ (1). If J = I1 × R2 for some 2-absorbing primary ideal I1 of R1 or
J = R1 × I2 for some 2-absorbing primary ideal I2 of R2, then it is clear that
J is a 2-absorbing primary ideal of R. Hence assume that J = I1 × I2 for some
primary ideal I1 of R1 and some primary ideal I2 of R2. Then I ′1 = I1 × R2

and I ′2 = R1 × I2 are primary ideals of R. Hence I ′1 ∩ I ′2 = I1 × I2 = J is a
2-absorbing primary ideal of R by Theorem 2.4. �

Theorem 2.24. Let R = R1 × R2 × · · · × Rn, where 2 ≤ n < ∞, and

R1, R2, . . . , Rn are commutative rings with 1 �= 0. Let J be a proper ideal

of R. Then the following statements are equivalent.
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(1) J is a 2-absorbing primary ideal of R.

(2) Either J = ×n
t=1It such that for some k ∈ {1, 2, . . . , n}, Ik is a 2-

absorbing primary ideal of Rk, and It = Rt for every t ∈ {1, 2, . . . , n} \
{k} or J = ×n

t=1It such that for some k,m ∈ {1, 2, . . . , n}, Ik is a

primary ideal of Rk, Im is a primary ideal of Rm, and It = Rt for

every t ∈ {1, 2, . . . , n} \ {k,m}.
Proof. We use induction on n. Assume that n = 2. Then the result is valid by
Theorem 2.23. Thus let 3 ≤ n < ∞ and assume that the result is valid when
K = R1 × · · · × Rn−1. We prove the result when R = K × Rn. By Theorem
2.23, J is a 2-absorbing primary ideal of R if and only if either J = L×Rn for
some 2-absorbing primary ideal L of K or J = K × Ln for some 2-absorbing
primary ideal Ln of Rn or J = L×Ln for some primary ideal L of K and some
primary ideal Ln of Rn. Observe that a proper ideal Q of K is a primary ideal
of K if and only if Q = ×n−1

t=1 It such that for some k ∈ {1, 2, . . . , n− 1}, Ik is
a primary ideal of Rk, and It = Rt for every t ∈ {1, 2, . . . , n− 1} \ {k}. Thus
the claim is now verified. �

Acknowledgement. We would like to thank the referee for his/her great
effort in proofreading the manuscript.

References

[1] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36

(2008), no. 2, 686–696.
[2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm.

Algebra 39 (2011), no. 5, 1646–1672.
[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75

(2007), no. 3, 417–429.
[4] A. Y. Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their

applications to rings, Semigroup Forum 86 (2013), no. 1, 83–91.
[5] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40

(2012), no. 4, 1268–1279.
[6] R. Gilmer, Multiplicative Ideal Theory, Queen Papers Pure Appl. Math. 90, Queen’s

University, Kingston, 1992.
[7] J. Huckaba, Rings with Zero-Divisors, New York/Basil, Marcel Dekker, 1988.
[8] S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (2012), no. 5-8,

265–271.

Ayman Badawi

Department of Mathematics & Statistics

American University of Sharjah

P.O. Box 26666, Sharjah, United Arab Emirates

E-mail address: abadawi@aus.edu

Unsal Tekir

Department of Mathematics

Marmara University

Istanbul, Turkey

E-mail address: utekir@marmara.edu.tr



ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS 1173

Ece Yetkin

Department of Mathematics

Marmara University

Istanbul, Turkey

E-mail address: ece.yetkin@marmara.edu.tr


